## Latent Class Measurement of Frailty and Dysregulation in Older Adults

Karen Bandeen-Roche, Ph.D. Departments of Biostatistics Johns Hopkins University

Joint Statistical Meetings Seattle, Washington August 9, 2006

# Outline

- Frailty and dysregulation
- Latent variable paradigm for measurement; application
- A new idea
  - Aims to balancing potentially conflicting theoretical premises
  - Application
- Discussion

#### Introduction The Frailty Construct



Fried et al., J Gerontol 2001; Bandeen-Roche et al., J Gerontol, 2006

# Frailty: Scientific Aims

- Sensitivity and specificity: A measure tied explicitly to systemic dysregulation
- Validate theory that frailty is:
  - More than a marker of disease
  - More than severe disability
  - A syndrome: an "aggregate" of component parts
  - A result of vulnerability to stressors & loss of reserve
- Product: A target for interventions
   Deliverable: A summary variable
- Generalization: "Geronmetrics"

## Frailty Measurement Latent Variable Paradigm



# Model

Kenneho

Generic

**Specific** (Latent Class Reg.; Categorical U=j , {1,...,J})

Measurement assumptions :  $[Y_i|U_i, x_i]$ 

- conditional independence, nondifferential measurement

> heterogeneity in criterion presentation unrelated to measured or unmeasured characteristics

> fundamentally identifying

In what sense is LCA a "measurement" model?

Does it "discover" structure?

It operationalizes theory

 Science: Test if predictions borne out
 Most frequent theory: Homogeneity

 <u>Sensitivity</u>: Do minor changes to theory greatly affect conclusions?

## Latent Class Measurement How to obtain "indices"?

 Via posterior probabilities of class membership =

$$\hat{F}_{U|Y,x}(u \mid y, x)$$

• Then: exactly how?

- "Modal": by highest probability
- "Pseudo-classes": Randomize (Bandeen-Roche et al., 1997; Wang et al., 2005)

## Latent Class Measurement Syndrome Validation Application

- **Data source**: Women's Health and Aging Studies (WHAS; *Guralnik et al., 1995; Fried et al., 2000*)
- This analysis:
   baseline cohort
   n=740, age 70-79
- Frailty: Fried criteria (Y: Fried et al. 2001)
   Exhaustion; grip strength; physical activity; walking speed; weight loss

## Latent Class Measurement Syndrome Validation Application

Criteria manifestation is syndromic

"a group of signs and symptoms that occur together and characterize a particular abnormality" (Webster Medical Dictionary 2003)

- If criteria characterize syndrome:
  - At least two clinically homogeneous groups (if <2, no co-occurrence)</li>
  - No subgrouping of symptoms (otherwise, more than one abnormality characterized)

#### Conditional Probabilities of Meeting Criteria in Latent Frailty Classes WHAS

| Criterion                  | 2-Class Model          |                | 3-Class Model   |                    |                |
|----------------------------|------------------------|----------------|-----------------|--------------------|----------------|
|                            | CL. 1<br>NON-<br>FRAIL | CL. 2<br>FRAIL | CL. 1<br>ROBUST | CL. 2<br>INTERMED. | CL. 3<br>FRAIL |
| Weight Loss                | .073                   | .26            | .072            | .11                | .54            |
| Weakness                   | .088                   | .51            | .029            | .26                | .77            |
| Slowness                   | .15                    | .70            | .004            | .45                | .85            |
| Low Physical<br>Activity   | .078                   | .51            | .000            | .28                | .70            |
| Exhaustion                 | .061                   | .34            | .027            | .16                | .56            |
| Class<br>Prevalence<br>(%) | 73.3                   | 26.7           | 39.2            | 53.6               | 7.2            |

Bandeen-Roche et al., J. Gerontol Med Sci, 2006

# Rationale of the New Work

Which deserves pre-eminence?

Internally validating assumptions
Externally validating assumptions?
e.g. close tie to systemic dysregulation
Some compromise?

# Rationale of the New Work

Which deserves pre-eminence?

 Internally validating assumptions
 Externally validating assumptions?
 Some compromise?

 A model (LCR) including externally validating variables and fitting by ML already "is" a compromise

## A representation theorem

#### Consider "mixing" & "kernel" distributions:



# A representation theorem

- Y<sub>i</sub> is equivalent in distribution to Y\* constructed as
  - 1) Generate V<sub>i</sub>\* from  $F_{V|x}^{*}(v|x_i)$
  - 2) Given V<sub>i</sub>\*, generate Y\* from  $F_{Y|V,x}^*(y|V_i^*,x_i)$
- <u>Relevance</u>:
  - True for  $\theta^*$  = Huber (1967) limit of MLE (e.g.)

#### True vs. realized mixing models



# Rationale of the New Work

Which deserves pre-eminence?

 Internally validating assumptions
 Externally validating assumptions?
 Some compromise?

 Proposal: Allow stronger (or weaker) compromise than ML via "penalized" fitting

# Implementing penalization

- <u>On LCR kernel</u>: Houseman, Coull & Betensky, *BMCS* online early
- <u>On LCR mixing distribution</u>: Sheppard et al., Session 320
- Key questions
  - Form of the penalty
  - Different purpose than usual?
  - What is the objective function?

## One empirical lead Deciding the extent of penalization

• Notice the form of  $F_{V|x}^*(v|x_i)$  :



#### • Idear1: y Right penalty yields $f^* = f$

## Simulation study Three-class model

- Small: 100 reps; single x~Unif(-.5,.5)
- Multiple n: Here, =2000
- Poly Log Reg:  $\beta_{01} = \beta_{02} = 0$ ;  $\beta_{12} = -1.4$ ;  $\beta_{12} = -2.8$
- Measurement:

| Class 1 | Class 2 | Class 3 |
|---------|---------|---------|
| .15     | .85     | .85     |
| .15     | .85     | .85     |
| .15     | .85     | .85     |
| .15     | .13     | .85     |
| .15     | .13     | .85     |

### Simulation study Three-class model

- Two scenarios (among more)
   Frank LCR
  - <u>Differential measurement</u>: last two items have increased log(odds =1) per unit x of 1.4 within each class
- Premise:  $f_{V|x}^{*}(v|x_{i},\theta)$ ,  $f_{V|x}(v|x_{i},\theta)$  quite different
- Measure: Kullback-Leibler distance

## KL Distance: f\*, f Scenario 1, n=2000

-3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6 -2.5 -2.4 -2.3 -2.2 True -2.0 4.99 4.76 4.76 4.86 4.89 5.15 5.26 5.42 6.23 6.34 6.93 7.59 7.99 -1.9 4.58 4.28 4.40 4.57 4.19 4.42 4.62 5.09/5.15 5.62 6.03 6.91 7.31 -1.8 4.52 4.36 4.18 4.07 3.88 3.96 4.22 4.26 4.55 5.09 5.52 5.96 6.58 -1.7 4.30 4.05 3.90 **3.64** 3.85 **3.71 3.73 4**.05 4.35 4.46 4.92 5.33 5.77 -1.6 4.56 4.21 3.80 3.62 3.52 3.54 3.67/3.69 3.88 4.07 4.36 4.88 5.46 -1.5 4.67 4.11 3.88 3.70 3.56 3.41 3.46 3.42 3.75 3.74 4.28 4.52 4.85 -1.4 4.87 4.39 3.91 3.84 3.62 3.27 3.62 3.40 3.69 3.68 3.70 4.03 4.52 -1.3 5.25 4.73 4.50 4.16 3.86 3.54 3.45 3.46 3.39 3.52 3.78 4.12 4.43 -1.2 5.58 4.99 4.76 4.47 4.16 3.81 3.70 3.60 3.75 3.74 3.85 4.25 4.30 -1.1 6.25 6.05 5.26 4.90 4.55 4.14 4.20 4.03 4.01 3.94 3.91 4.45 4.28

## KL Distance: f\*, f Scenario 2, n=2000

 $\hat{\beta}_{22}$  -3.8 -3.7 -3.6 -3.5 -3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8 -2.7 -2.6

 $\hat{eta}_{12}$ -2.4 4.03 4.37/4.63 5.05 5.39 5.93 6.35 7.17 8.00 8.76 9.36 10.40 11.74 -2.3 3.79 3.87 4.10 4.59 4.93 5.14 5.84 6.38 6.76 7.79 8.55 9.46 10.50 -2.2 3.48 3.63 3.90 3.98 4.27 4.60 5.20 5.76 6.17 7.01 7.78 8.26 9.65 -2.1 3.31 3.17 3.47 3.51 3.95 4.25 4.69 5.04 5.64 6.34 7.01 8.09 9.07 -2.0 **3.19 3.29 3.41 3.33 3.70 3.94 4.34 4.60 5.10 5.62 6.70 7.24 8.02** -1.9 3.17 3.09 3.19 3.27 3.39 3.64 3.99 4.25 4.93 5.40 6.17 6.90 7.37 -1.8 **3.31 3.24 3.22 3.26 3.35 3.63 3.98** 4.35 4.75 5.12 5.34 6.40 7.00 -1.7 **3.56 3.33 3.43 3.32 3.31 3.57 3.85** 4.17 4.40 4.79 5.43 6.00 6.33 6.62 -1.6 3.83 3.77 **3.60 3.69 3.68 3.62** 3.80 4.19 4.65 4.87 5.38 6.21 -1.5 4.36 3.95 4.02 3.97 3.89 3.82 4.05 4.24 4.56 5.05 5.37 5.86 6.36 -1.4 4.90 4.69 4.43 4.28 4.34 4.46 4.35 4.65 4.88 5.11 5.41 5.99 6.49 -1.3 5.56 5.41 5.11 4.95 4.77 4.84 4.72 4.74 5.01 5.49 5.85 6.19 6.60 -1.2 6.41 5.97 5.87 5.59 5.37 5.17 5.33 5.18 5.52 5.96 6.08 6.31 6.99

True

## Simulation Study Empirical support for "penalty"?



 Average conditional probability estimates amazingly stable

 Distinction: Y|V\*,x

#### Frailty analysis: Data InCHIANTI (*Ferrucci et al., JAGS, 48:1618-25*)

- Aim : Causes of walking decline
- Brief design
  - Random sample  $\geq$  65 years (n=1270)
  - Enrichment for oldest-old, younger ages
  - Participation: > 90% in the primary sample
  - Home interview, blood draw, physical exam
- Dysregulation: inflammation 7 cytokines
  - IL-6, CRP, TNF-a, IL-1RA, IL-18, IL-1B, TGF- $\beta$
  - Here: concern = poorer inhibition
- Frailty: Fried criteria (as before)

## Frailty analysis: Results

- Measurement model: 2 classes
  - Conditional probabilities similar to WHAS
  - Lower "frail" prevalence (15% vs. 27%)
- Regression model
  - 1 SD worse inhibition index associated with 35% reduction in non-frail odds (z ~ 3)
  - Regression coefficient on original index scale: 3.00
- Next: Vary regression coefficients in increments of +/- 0.5, up to +/- 2.0

### Frailty analysis: Results <u>Posterior probs. from different fits</u>



#### Frailty analysis: Results Posterior probs. non-frail, different fits



## Frailty analysis: Results Age-adjusted relation to mobility

| Frailty fit:<br>inflam. slope | Mobility slope<br>(frail vs non) | SE   |
|-------------------------------|----------------------------------|------|
| ML - 2.0                      | -1.1                             | .089 |
| ML - 1.0                      | -1.0                             | .087 |
| ML – 0.5                      | -1.0                             | .086 |
| ML                            | -0.99                            | .085 |
| ML + 0.5                      | -0.93                            | .085 |
| ML + 1.0                      | -0.92                            | .085 |
| ML + 2.0                      | -0.82                            | .083 |



- Presented: Frameworks for measurement

   of complex geriatric health states
   incorporating biological knowledge
- Demonstrations
  - Frailty in WHAS
  - Frailty and inflammatory dysregulation in In CHIANTI

# Rationale for the proposal

vs looser internal validation criteria?
 – estimability

vs Bayesian approach

 depends on degree of empiricism
 if balance by "consensus"—Bayesian

Allows some distrust of the data

## Research needed

- Theory elicitation, incorporation
- Methodology freeing measurement model estimation to "move" with "penalty"
  - Rotation?
  - Penalty on conditional probabilities
- Compromise of latent variable, predictive approaches
- Best index derivation

# Implications

- Refined understanding of aging states and their measurement
  - Integrating biology
  - Increasing sensitivity, specificity
- Heightened accuracy, precision for

   Delineating etiology
   Developing and targeting interventions

# Acknowledgments

- Hopkins Colleagues
   Linda Fried, Ron Brookmeyer, Yi Huang,
   Jeannie-Marie Leoutsakos, Jeremy Walston,
   Qian-Li Xue, Scott Zeger
- Colleagues outside of Hopkins Luigi Ferrucci, Jack Guralnik, Don Ingram, Richard Miller
- Funding / Institutional Support Johns Hopkins Older Americans Independence Center, National Institute on Aging, Alliance for Aging Research